最新必看!谷歌版Claude Code发布, Gemini CLI大方开源、每分钟 60 次请求,每天 1000 次!
最新必看!谷歌版Claude Code发布, Gemini CLI大方开源、每分钟 60 次请求,每天 1000 次!刚刚谷歌推出了 Gemini CLI,一个开源的 AI Agent,把 Gemini 的能力直接带到你的终端里。可以把它看作是谷歌版的 Claude Code。最香的是,这玩意儿开源、免费用,背后是带百万上下文的最强 Gemini 模型。
刚刚谷歌推出了 Gemini CLI,一个开源的 AI Agent,把 Gemini 的能力直接带到你的终端里。可以把它看作是谷歌版的 Claude Code。最香的是,这玩意儿开源、免费用,背后是带百万上下文的最强 Gemini 模型。
MyShell 自从进入 ShellAgent 的框架阶段,由于深度融合了 ComfyUI 生态,图像视频流的 Agent 迎来了井喷式的爆发。上个月据说上新了 150+个,竞争确实有点激烈了。但其实图像视频流的能力并不代表 ShellAgent 所能做的全部可能性,仍然有大量值得探索的场景等待创作者去尝试。
2025年,随着 Agent 应用在千行百业加速落地,Agent 应用开发的实际需求和痛点也正在发生变化。
大家好,我是歸藏(guizang),今天给大家带来 Kimi 的深度研究能力体验和介绍。
你能想象一个汽车经销商每天漏接45%电话的场景吗?这意味着几乎一半想要预约保养、询问配件或购车咨询的客户都被直接晾在了一边。
这款 Agent 擅长多轮搜索和推理,平均每项任务执行 23 个推理步骤,访问超过 200 个网址。它是基于 Kimi k 系列模型的内部版本构建,并完全通过端到端智能体强化学习进行训练,也是国内少有的基于自研模型打造的 Agent。
随着语言模型在强化学习和 agentic 领域的进步,agent 正在从通用领域快速渗透到垂直领域,科学和生物医药这类高价值领域尤其受到关注。
在 AI Agent 浪潮席卷行业的当下,高效优雅开发具备复杂推理与协作能力的智能体成为业界焦点。本文将系统梳理 AI Agent 核心理念、主流协议与思考框架,并结合 Golang 生态工程化框架,深入剖析多 Agent 协作系统的设计与落地。
LLM 智能体的时代,单个 Agent 的能力已到瓶颈,组建像 “智能体天团” 一样的多智能体系统已经见证了广泛的成功
你有没有想过,为什么互联网时代的工作还是这么繁琐?为什么我们还在重复填写表格、点击按钮、手动查找信息?当 AI 能够写代码、画图、甚至思考复杂问题时,为什么我们仍然被困在一个个网页界面中,像机器人一样执行着重复性任务?